World

Lý thuyết lôgarit | SGK Toán lớp 12 – Loigiaihay.com

Lý thuyết lôgarit | SGK Toán lớp 12 – Loigiaihay.com

Cách đọc logarit

1. Định nghĩa

Cho hai số dương a, b với (ane1). Nghiệm duy nhất của phương trình ({a^x} = b) được gọi là ({log _a}b) ( tức là số (alpha) có tính chất là ({a^alpha } = b)).

Như vậy ({log _a}b = alpha Leftrightarrow {a^alpha } = b).

Ví dụ: ({log _4}16 = 2) vì ({4^2} = 16).

2. Lôgarit thập phân và lôgarit tự nhiên

Lôgarit cơ số 10 còn được gọi là lôgarit thập phân, số log10b thường được viết là logb hoặc lgb.

Lôgarit cơ số (e) ((e= mathop {lim }limits_{n to + infty } {left( {1 + dfrac 1 n} right)^n}) ≈ 2,718281828459045) còn được gọi là lôgarit tự nhiên, số logeb thường được viết là lnb.

3. Tính chất của lôgarit

Lôgarit có các tính chất rất phong phú, có thể chia ra thành các nhóm sau đây:

1) Lôgarit của đơn vị và lôgarit của cơ số:

Với cơ số tùy ý, ta luôn có loga1 = 0 và logaa= 1.

2) Phép mũ hóa và phép lôgarit hóa theo cùng cơ số (mũ hóa số thực α theo cơ số a là tính aα; lôgarit hóa số dương b theo cơ số a là tính logab) là hai phép toán ngược nhau.

(∀a >0 ,(ane) 1), (∀b> 0), ({a^{{{log }_a}b}} = b)

(∀a >0 , (ane 1)), ({log _a}{a^alpha }= α)

3) Lôgarit và các phép toán: Phép lôgarit hóa biến phép nhân thành phép cộng, phép chia thành phép trừ, phép nâng lên lũy thừa thành phép nhân, phép khai căn thành phép chia, cụ thể là

Với (forall a,{b_1},{b_2} > 0,a ne 1) ta có:

Xem thêm:  Hàng Auth là gì? Cách nhận biết hàng Auth chuẩn nhất hiện nay

+) ({log _a}left( {{b_1}{b_2}} right) = {log _a}{b_1} + {log _a}{b_2})

+) ({log _a}left( {dfrac{{{b_1}}}{{{b_2}}}} right) = {log _a}{b_1} – {log _a}{b_2})

+) (∀a,b >0, (ane 1),) (∀α) ta có:

({log _a}{b^alpha } = alpha. {log _a}b)

({log _a}root n of b = dfrac{1}{n}.{log _a}b)

Ví dụ: Tính (A = {log _2}dfrac{{15}}{2} – 2{log _2}sqrt 3 ).

Ta có:

(begin{array}{l}A = {log _2}dfrac{{15}}{2} – 2{log _2}sqrt 3 \,,,,, = {log _2}15 – {log _2}2 – 2.dfrac{1}{2}{log _2}3\,,,,, = {log _2}left( {3.5} right) – 1 – {log _2}3\,,,,, = {log _2}3 + {log _2}5 – 1 – {log _2}3\,,,,, = {log _2}5 – 1end{array})

4) Đổi cơ số: Có thể chuyển các phép lấy lôgarit theo những cơ số khác nhau về việc tính lôgarit theo cùng một cơ số chung, cụ thể là

(∀a,b,c >0 , (a, cne1)), ({log _a}b = dfrac{{{log }_c}b} {{{log }_c}a}).

Đặc biệt (∀a,b >0 , (a,b ne1) , {log _a}b = dfrac{1}{{{log }_b}a})

(∀a,b >0 , (a ne1), ∀α, β, (αne 0)) ta có:

({log _{{a^alpha }}}b = dfrac{1}{alpha }{log _a}b)

({log _{{a^alpha }}}{b^beta } = dfrac{beta}{ alpha }{log _a}b)

({log _a}dfrac{1}{b} = – {log _a}bleft( {0 < a ne 1;b > 0} right))

({log _a}sqrt[n]{b} = {log _a}{b^{frac{1}{n}}} = dfrac{1}{n}{log _a}b) ( left( {0 < a ne 1;b > 0;n > 0;n in {N^*}} right))

({log _a}b.{log _b}c = {log _a}c Leftrightarrow {log _b}c = dfrac{{{{log }_a}c}}{{{{log }_a}b}}) (left( {0 < a,b ne 1;c > 0} right))

({log _a}b = dfrac{1}{{{{log }_b}a}} Leftrightarrow {log _a}b.{log _b}a = 1) (left( {0 < a,b ne 1} right))

({log _{{a^n}}}b = dfrac{1}{n}{log _a}b) (left( {0 < a ne 1;b > 0;n ne 0} right))

Ví dụ: Tính (B = 3{log _8}12 – 2{log _2}3 + 12{log _{16}}sqrt[3]{3})

Ta có:

Xem thêm:  50+ từ vựng tiếng Anh về nấu ăn thông dụng nhất

(begin{array}{l}B = 3{log _8}12 – 2{log _2}3 + 12{log _{16}}sqrt[3]{3}\,,,,, = 3{log _{{2^3}}}12 – 2{log _2}3 + 12.{log _{{2^4}}}sqrt[3]{3}\,,,,, = 3.dfrac{1}{3}{log _2}12 – 2{log _2}3 + 12.dfrac{1}{4}{log _2}sqrt[3]{3}\,,,,, = {log _2}12 – 2{log _2}3 + 3{log _2}sqrt[3]{3}\,,,,, = {log _2}12 – {log _2}{3^2} + {log _2}{left( {sqrt[3]{3}} right)^3}\,,,,, = {log _2}12 – {log _2}9 + {log _2}3\,,,,, = {log _2}dfrac{{12.3}}{9}\,,,,, = {log _2}4\,,,,, = {log _2}{2^2}\,,,,, = 2end{array})

Related posts
World

Cách đọc & viết các ngày trong tuần bằng tiếng Anh chính xác nhất

World

5 nhóm thu nhập là gì? các mức thu nhập ở Việt Nam - Glints

World

Thác Dambri huyền thoại giữa đại ngàn Tây Nguyên năm 2023

World

Sau Danh Từ Là Gì – Tính Từ Đứng Trước Hay Sau Danh Từ

Liên Hệ Quảng Cáo 

[mc4wp_form id="14"]